Tifa's CP Library

:heavy_check_mark: src/test_cpverifier/library-checker/inverse_matrix.ds.test.cpp

Depends on

Code

#define AUTO_GENERATED
#define PROBLEM "https://judge.yosupo.jp/problem/inverse_matrix"

#include "../../code/lalg/ge_basic_mat.hpp"
#include "../../code/lalg/inv_mat.hpp"
#include "../../code/lalg/mat.hpp"

constexpr u32 MOD = 998244353;

#include "../../code/math/mint_ds.hpp"

using mint = tifa_libs::math::mint_ds<-1>;
using mat = tifa_libs::math::matrix<mint>;

int main() {
  mint::set_mod(MOD);
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);
  u32 n;
  std::cin >> n;
  mat a(n, n);
  std::cin >> a;
  auto is_0 = [](mint const &x) { return x.val() == 0; };
  auto ge = [&is_0](mat &m, bool f) { return tifa_libs::math::ge_basic(m, is_0, f); };
  auto res = tifa_libs::math::inv_mat(a, is_0, ge);
  if (res)
    std::cout << res.value();
  else
    std::cout << "-1\n";
  return 0;
}
#line 1 "src/test_cpverifier/library-checker/inverse_matrix.ds.test.cpp"
#define AUTO_GENERATED
#define PROBLEM "https://judge.yosupo.jp/problem/inverse_matrix"

#line 1 "src/code/lalg/ge_basic_mat.hpp"



#line 1 "src/code/lalg/ge_swapr_mat_.hpp"



#line 1 "src/code/util/util.hpp"



#include <bits/stdc++.h>

template <class T>
constexpr T abs(T x) { return x < 0 ? -x : x; }

using i8 = int8_t;
using i16 = int16_t;
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
using isz = ptrdiff_t;

using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;
using usz = size_t;

using f32 = float;
using f64 = double;
using f128 = long double;

template <class T>
using ptt = std::pair<T, T>;
template <class T>
using pt3 = std::tuple<T, T, T>;
template <class T>
using pt4 = std::tuple<T, T, T, T>;

template <class T, usz N>
using arr = std::array<T, N>;
template <class T>
using vec = std::vector<T>;
template <class T>
using vvec = vec<vec<T>>;
template <class T>
using v3ec = vec<vvec<T>>;
template <class U, class T>
using vecp = vec<std::pair<U, T>>;
template <class U, class T>
using vvecp = vvec<std::pair<U, T>>;
template <class T>
using vecpt = vec<ptt<T>>;
template <class T>
using vvecpt = vvec<ptt<T>>;

template <class T, class C = std::less<T>>
using pq = std::priority_queue<T, vec<T>, C>;
template <class T>
using pqg = std::priority_queue<T, vec<T>, std::greater<T>>;

using strn = std::string;
using strnv = std::string_view;

using vecu = vec<u32>;
using vvecu = vvec<u32>;
using v3ecu = v3ec<u32>;
using vecu64 = vec<u64>;
using vecb = vec<bool>;
using vvecb = vvec<bool>;

#ifdef ONLINE_JUDGE
#undef assert
#define assert(x) 42
#endif

using namespace std::literals;

constexpr i8 operator""_i8(unsigned long long x) { return (i8)x; }
constexpr i16 operator""_i16(unsigned long long x) { return (i16)x; }
constexpr i32 operator""_i32(unsigned long long x) { return (i32)x; }
constexpr i64 operator""_i64(unsigned long long x) { return (i64)x; }
constexpr isz operator""_iz(unsigned long long x) { return (isz)x; }

constexpr u8 operator""_u8(unsigned long long x) { return (u8)x; }
constexpr u16 operator""_u16(unsigned long long x) { return (u16)x; }
constexpr u32 operator""_u32(unsigned long long x) { return (u32)x; }
constexpr u64 operator""_u64(unsigned long long x) { return (u64)x; }
constexpr usz operator""_uz(unsigned long long x) { return (usz)x; }

inline const auto fn_0 = [](auto&&...) {};


#line 5 "src/code/lalg/ge_swapr_mat_.hpp"

namespace tifa_libs::math::ge_impl_ {

template <class Mat>
constexpr bool swapr__(Mat &mat, u32 &r_, u32 r_pre_, u32 r_end) {
  r_ = r_pre_;
  for (u32 j = r_ + 1; j < r_end; ++j)
    if (mat.data()[r_] < mat.data()[j]) r_ = j;
  if (r_ != r_pre_) {
    mat.swap_row(r_, r_pre_);
    return true;
  }
  return false;
}

}  // namespace tifa_libs::math::ge_impl_


#line 5 "src/code/lalg/ge_basic_mat.hpp"

namespace tifa_libs::math {

template <class Mat, class Is0>
requires requires(Is0 is0, typename Mat::value_type t) {
  { is0(t) } -> std::same_as<bool>;
}
constexpr i32 ge_basic(Mat& mat, Is0&& is0, bool clear_u = true) {
  using T = typename Mat::value_type;
  u32 r_ = mat.row(), c_ = mat.col(), rk_max = std::min(r_, c_);
  u32 rk = 0;
  bool neg = false;
  for (u32 i = 0, now_row = 0, j_ = i; i < mat.row(); ++i) {
    neg ^= ge_impl_::swapr__(mat, now_row, rk, mat.row());
    j_ = std::max(j_, i);
    while (j_ < c_ && is0(mat(rk, j_))) ++j_;
    if (j_ == c_) break;
    for (u32 j = clear_u ? 0 : rk + 1; j < mat.row(); ++j) {
      if (j == rk || is0(mat(j, j_))) continue;
      T _ = mat(j, j_) / mat(rk, j_);
      mat(j, j_) = 0;
      for (u32 k = j_ + 1; k < c_; ++k) mat(j, k) -= mat(rk, k) * _;
    }
    if (++rk >= rk_max) break;
  }
  return neg ? -((i32)rk) : (i32)rk;
}

}  // namespace tifa_libs::math


#line 1 "src/code/lalg/inv_mat.hpp"



#line 1 "src/code/lalg/merge_lr_mat.hpp"



#line 1 "src/code/lalg/mat.hpp"



#line 5 "src/code/lalg/mat.hpp"

namespace tifa_libs::math {

#define FOR1_(i, l, r) for (u32 i = (l), i##ed__ = (r); i < i##ed__; ++i)
#define FOR2_(i, row_l, row_r, j, col_l, col_r) \
  FOR1_ (i, row_l, row_r)                       \
    FOR1_ (j, col_l, col_r)

template <class T>
class matrix {
  vvec<T> d;

 public:
  using value_type = T;

  constexpr matrix(u32 row, u32 col, T const &v = T{}) : d(row, vec<T>(col, v)) { assert(row > 0 && col > 0); }
  explicit constexpr matrix(vvec<T> const &data) : d(data) { assert(data.size() > 0 && data[0].size() > 0); }

  constexpr u32 row() const { return (u32)d.size(); }
  constexpr u32 col() const { return (u32)d[0].size(); }
  constexpr vvec<T> const &data() const { return d; }
  constexpr vvec<T> &data() { return d; }
  constexpr typename vec<T>::reference operator()(u32 r, u32 c) { return d[r][c]; }
  constexpr typename vec<T>::const_reference operator()(u32 r, u32 c) const { return d[r][c]; }

  template <class F>
  constexpr void apply(F &&f) { apply_range(0, row(), 0, col(), std::forward<F>(f)); }
  template <class F>
  requires requires(F f, u32 i, u32 j, T &val) {
    f(i, j, val);
  }
  constexpr void apply_range(u32 row_l, u32 row_r, u32 col_l, u32 col_r, F &&f) {
    assert(row_l < row_r && row_r <= row());
    assert(col_l < col_r && col_r <= col());
    FOR2_ (i, row_l, row_r, j, col_l, col_r) f(i, j, (*this)(i, j));
  }

  friend std::istream &operator>>(std::istream &is, matrix &mat) {
    u32 r_ = mat.row(), c_ = mat.col();
    FOR2_ (i, 0, r_, j, 0, c_) is >> mat(i, j);
    return is;
  }
  friend std::ostream &operator<<(std::ostream &os, matrix const &mat) {
    u32 r_ = mat.row(), c_ = mat.col();
    FOR2_ (i, 0, r_ - 1, j, 0, c_) os << mat(i, j) << " \n"[j + 1 == c_];
    os << mat(r_ - 1, 0);
    FOR1_ (j, 1, c_) os << ' ' << mat(r_ - 1, j);
    return os;
  }

  constexpr matrix submat(u32 row_l, u32 row_r, u32 col_l, u32 col_r) const {
    assert(row_l < row_r && row_r <= row());
    assert(col_l < col_r && col_r <= col());
    matrix ret(row_r - row_l, col_r - col_l);
    ret.apply_range(0, ret.row(), 0, ret.col(), [this, row_l, col_l](u32 i, u32 j, T &v) { v = (*this)(i + row_l, j + col_l); });
    return ret;
  }

  constexpr void swap_row(u32 r1, u32 r2) {
    assert(r1 < row() && r2 < row());
    if (r1 == r2) return;
    std::swap(d[r1], d[r2]);
  }
  constexpr void swap_col(u32 c1, u32 c2) {
    assert(c1 < col() && c2 < col());
    if (c1 == c2) return;
    FOR1_ (i, 0, row()) std::swap((*this)(i, c1), (*this)(i, c2));
  }

  constexpr matrix operator-() const {
    if constexpr (std::is_same_v<T, bool>) return *this;
    else {
      matrix ret = *this;
      ret.apply_range(0, row(), 0, col(), [](u32, u32, T &v) { v = -v; });
      return ret;
    }
  }

  friend constexpr matrix operator+(matrix l, T const &v) { return l += v; }
  friend constexpr matrix operator+(T const &v, matrix l) { return l += v; }
  constexpr matrix &operator+=(T const &v) {
    if constexpr (std::is_same_v<T, bool>) apply_range(0, row(), 0, col(), [&v](u32, u32, auto &val) { val = val ^ v; });
    else apply_range(0, row(), 0, col(), [&v](u32, u32, T &val) { val += v; });
    return *this;
  }
  friend constexpr matrix operator-(matrix l, T const &v) { return l -= v; }
  constexpr matrix &operator-=(T const &v) {
    if constexpr (std::is_same_v<T, bool>) apply_range(0, row(), 0, col(), [&v](u32, u32, auto &val) { val = val ^ v; });
    else apply_range(0, row(), 0, col(), [&v](u32, u32, T &val) { val -= v; });
    return *this;
  }
  friend constexpr matrix operator*(matrix l, T const &v) { return l *= v; }
  friend constexpr matrix operator*(T const &v, matrix l) { return l *= v; }
  constexpr matrix &operator*=(T const &v) {
    if constexpr (std::is_same_v<T, bool>) {
      if (!v)
        for (auto &i : d) i.clear(), i.resize(col());
      return *this;
    } else apply_range(0, row(), 0, col(), [&v](u32, u32, T &val) { val *= v; });
    return *this;
  }

  friend constexpr matrix operator+(matrix l, matrix const &r) { return l += r; }
  constexpr matrix &operator+=(matrix const &r) {
    assert(row() == r.row() && col() == r.col());
    if constexpr (std::is_same_v<T, bool>) apply_range(0, row(), 0, col(), [&r](u32 i, u32 j, auto &val) { val = val ^ r(i, j); });
    else apply_range(0, row(), 0, col(), [&r](u32 i, u32 j, T &val) { val += r(i, j); });
    return *this;
  }
  friend constexpr matrix operator-(matrix l, matrix const &r) { return l -= r; }
  constexpr matrix &operator-=(matrix const &r) {
    assert(row() == r.row() && col() == r.col());
    if constexpr (std::is_same_v<T, bool>) apply_range(0, row(), 0, col(), [&r](u32 i, u32 j, auto &val) { val = val ^ r(i, j); });
    else apply_range(0, row(), 0, col(), [&r](u32 i, u32 j, T &val) { val -= r(i, j); });
    return *this;
  }

  friend constexpr matrix operator*(matrix const &l, matrix const &r) {
    u32 i_ = l.row(), j_ = l.col(), k_ = r.col();
    assert(j_ == r.row());
    matrix ret(i_, k_);
    FOR1_ (i, 0, i_)
      FOR1_ (j, 0, j_)
        FOR1_ (k, 0, k_)
          if constexpr (std::is_same_v<T, bool>) ret(i, k) = ret(i, k) ^ (l(i, j) && r(j, k));
          else ret(i, k) += l(i, j) * r(j, k);
    return ret;
  }
  constexpr matrix &operator*=(matrix const &r) { return *this = *this * r; }

  constexpr vec<T> lproj(vec<T> const &x) const {
    u32 r_ = row(), c_ = col();
    assert(r_ == x.size());
    vec<T> ret(c_);
    for (u32 i = 0; i < c_; ++i)
      if constexpr (std::is_same_v<T, bool>) ret[i] = std::transform_reduce(d[i].begin(), d[i].end(), x.begin(), false, std::bit_xor<bool>{}, std::bit_and<bool>{});
      else ret[i] = std::transform_reduce(d[i].begin(), d[i].end(), x.begin(), T{});
    return ret;
  }

  constexpr bool operator==(matrix const &r) const {
    if (row() != r.row() || col() != r.col()) return 0;
    FOR1_ (i, 0, row())
      if (d[i] != r.d[i]) return 0;
    return 1;
  }
};

#undef FOR1_
#undef FOR2_

}  // namespace tifa_libs::math


#line 5 "src/code/lalg/merge_lr_mat.hpp"

namespace tifa_libs::math {

// [l] [r] -> [l r]
template <class T>
constexpr matrix<T> merge_lr_mat(matrix<T> const &l, matrix<T> const &r) {
  u32 r_ = l.row();
  assert(r_ == r.row());
  u32 lc_ = l.col(), rc_ = r.col(), c_ = lc_ + rc_;
  matrix<T> ret(r_, c_);
  ret.apply_range(0, r_, 0, lc_, [&l](u32 i, u32 j, T &val) { val = l(i, j); });
  ret.apply_range(0, r_, lc_, c_, [lc_, &r](u32 i, u32 j, T &val) { val = r(i, j - lc_); });
  return ret;
}

}  // namespace tifa_libs::math


#line 5 "src/code/lalg/inv_mat.hpp"

namespace tifa_libs::math {

template <class T, class Is0, class Ge>
requires requires(Is0 is0, Ge ge, T t, matrix<T> A, bool clear_u) {
  { is0(t) } -> std::same_as<bool>;
  { ge(A, clear_u) } -> std::same_as<i32>;
}
constexpr std::optional<matrix<T>> inv_mat(matrix<T> const& mat, Is0&& is0, Ge&& ge) {
  u32 n = mat.row();
  if (n != mat.col()) return {};
  matrix<T> ret(n, n);
  for (u32 i = 0; i < n; ++i) ret(i, i) = 1;
  if ((u64)abs(ge(ret = merge_lr_mat(mat, ret), true)) != n) return {};
  for (u32 i = 0; i < n; ++i)
    if (is0(ret(i, i))) return {};
  ret.apply_range(0, n, n, n * 2, [&ret](u32 i, u32, T& val) { val /= ret(i, i); });
  return ret.submat(0, n, n, n * 2);
}

}  // namespace tifa_libs::math


#line 7 "src/test_cpverifier/library-checker/inverse_matrix.ds.test.cpp"

constexpr u32 MOD = 998244353;

#line 1 "src/code/math/mint_ds.hpp"



#line 1 "src/code/math/mint.hpp"



#line 1 "src/code/nt/inverse.hpp"



#line 1 "src/code/nt/inv_gcd.hpp"



#line 1 "src/code/math/safe_mod.hpp"



#line 1 "src/code/util/traits.hpp"



#line 5 "src/code/util/traits.hpp"

namespace tifa_libs {

template <class T>
concept iterable_c = requires(T v) {
  { v.begin() } -> std::same_as<typename T::iterator>;
  { v.end() } -> std::same_as<typename T::iterator>;
};

template <class T>
concept container_c = iterable_c<T> && !std::derived_from<T, std::basic_string<typename T::value_type>>;

template <class T>
constexpr bool is_char_v = std::is_same_v<T, char> || std::is_same_v<T, signed char> || std::is_same_v<T, unsigned char>;
template <class T>
concept char_c = is_char_v<T>;

template <class T>
constexpr bool is_s128_v = std::is_same_v<T, __int128_t> || std::is_same_v<T, __int128>;
template <class T>
concept s128_c = is_s128_v<T>;

template <class T>
constexpr bool is_u128_v = std::is_same_v<T, __uint128_t> || std::is_same_v<T, unsigned __int128>;
template <class T>
concept u128_c = is_u128_v<T>;

template <class T>
constexpr bool is_i128_v = is_s128_v<T> || is_u128_v<T>;
template <class T>
concept i128_c = is_u128_v<T>;

template <class T>
constexpr bool is_int_v = std::is_integral_v<T> || is_i128_v<T>;
template <class T>
concept int_c = is_int_v<T>;

template <class T>
constexpr bool is_sint_v = is_s128_v<T> || (is_int_v<T> && std::is_signed_v<T>);
template <class T>
concept sint_c = is_sint_v<T>;

template <class T>
constexpr bool is_uint_v = is_u128_v<T> || (is_int_v<T> && std::is_unsigned_v<T>);
template <class T>
concept uint_c = is_uint_v<T>;

template <class T>
concept mint_c = requires(T x) {
  { x.mod() } -> uint_c;
  { x.val() } -> uint_c;
};

template <class T>
constexpr bool is_arithm_v = std::is_arithmetic_v<T> || is_int_v<T>;
template <class T>
concept arithm_c = is_arithm_v<T>;

template <class T>
struct to_sint : std::make_signed<T> {};
template <>
struct to_sint<u128> {
  using type = u128;
};
template <>
struct to_sint<i128> {
  using type = u128;
};
template <class T>
using to_sint_t = typename to_sint<T>::type;

template <class T>
struct to_uint : std::make_unsigned<T> {};
template <>
struct to_uint<u128> {
  using type = u128;
};
template <>
struct to_uint<i128> {
  using type = u128;
};
template <class T>
using to_uint_t = typename to_uint<T>::type;

}  // namespace tifa_libs


#line 5 "src/code/math/safe_mod.hpp"

namespace tifa_libs::math {

template <sint_c T>
constexpr T safe_mod(T x, to_uint_t<T> mod) { return ((x %= (T)mod) < 0 ? x + (T)mod : x); }

}  // namespace tifa_libs::math


#line 1 "src/code/nt/exgcd.hpp"



#line 5 "src/code/nt/exgcd.hpp"

namespace tifa_libs::math {

// @return tuple(g, x, y) s.t. g = gcd(a, b), xa + yb = g, |x| + |y| is the minimal (primary) and x <= y (secondarily)
template <sint_c T>
constexpr auto exgcd(T a, T b) {
  T x1 = 1, x2 = 0, x3 = 0, x4 = 1;
  while (b) {
    T c = a / b;
    std::tie(x1, x2, x3, x4, a, b) = std::make_tuple(x3, x4, x1 - x3 * c, x2 - x4 * c, b, a - b * c);
  }
  return std::make_tuple(to_uint_t<T>(a), x1, x2);
}

}  // namespace tifa_libs::math


#line 6 "src/code/nt/inv_gcd.hpp"

namespace tifa_libs::math {

template <uint_c T>
constexpr ptt<T> inv_gcd(T n, T mod) {
  using U = to_sint_t<T>;
  auto [g, x, y] = exgcd(U(n % mod), (U)mod);
  return {g, safe_mod(x, mod)};
}

}  // namespace tifa_libs::math


#line 5 "src/code/nt/inverse.hpp"

namespace tifa_libs::math {

template <uint_c T, uint_c U>
constexpr U inverse(T n, U mod) {
  auto [g, x] = inv_gcd(U(n % mod), mod);
  assert(g == 1);
  return x;
}

}  // namespace tifa_libs::math


#line 6 "src/code/math/mint.hpp"

namespace tifa_libs::math {

template <class D, uint_c Rt>
class mint {
  constexpr D const &d() const { return static_cast<D const &>(*this); }
  constexpr D &d() { return static_cast<D &>(*this); }

 protected:
  Rt v_{};

 public:
  constexpr mint() {}
  template <int_c T>
  constexpr mint(T v) : v_(D::mod_(v)) {}
  constexpr operator D() { return d(); }

  using raw_type = Rt;
  using sraw_type = to_sint_t<Rt>;
  static constexpr raw_type mod() { return D::mod_(); }
  static constexpr sraw_type smod() { return (sraw_type)D::mod_(); }
  constexpr raw_type val() const { return d().val_(); }
  constexpr sraw_type sval() const { return (sraw_type)d().val_(); }
  constexpr raw_type &data() { return d().data_(); }

  template <int_c T>
  explicit constexpr operator T() const { return (T)val(); }
  constexpr mint &operator+=(mint const &r) { return d().adde_(r.d()); }
  constexpr mint &operator-=(mint const &r) { return d().sube_(r.d()); }
  constexpr mint &operator*=(mint const &r) { return d().mule_(r.d()); }
  constexpr mint &operator/=(mint const &r) { return *this = *this * r.inv(); }
  constexpr mint const &operator+() const { return *this; }
  constexpr mint operator-() const { return d().neg_(); }
  constexpr mint inv() const { return inverse(val(), mod()); }
  friend constexpr mint operator+(mint l, mint const &r) { return l += r; }
  friend constexpr mint operator-(mint l, mint const &r) { return l -= r; }
  friend constexpr mint operator*(mint l, mint const &r) { return l *= r; }
  friend constexpr mint operator/(mint l, mint const &r) { return l /= r; }
  friend constexpr bool operator==(mint const &l, mint const &r) { return l.val() == r.val(); }
  friend constexpr auto operator<=>(mint const &l, mint const &r) { return l.sval() - r.sval(); }
  friend std::istream &operator>>(std::istream &is, mint &x) {
    i64 _;
    is >> _;
    x = mint(_);
    return is;
  }
  friend std::ostream &operator<<(std::ostream &os, mint const &x) { return os << x.val(); }
  friend constexpr mint abs(mint const &x) { return x.val(); }
};

}  // namespace tifa_libs::math


#line 5 "src/code/math/mint_ds.hpp"

namespace tifa_libs::math {

template <i32 ID>
class mint_ds : public mint<mint_ds<ID>, u32> {
  using base = mint<mint_ds<ID>, u32>;
  friend base;

  struct barrett {
    u32 m_;
    u64 im;
    // @param m `1 <= m < 2^31`
    explicit constexpr barrett(u32 m = 998244353) : m_(m), im(-1_u64 / m + 1) {}
    // @return m
    constexpr u32 umod() const { return m_; }
    constexpr u32 mul(u32 a, u32 b) const {
      u64 z = (u64)a * b, x = (u64)(((u128)z * im) >> 64);
      u32 v = (u32)(z - x * m_);
      return v + (m_ <= v ? m_ : 0);
    }
  };

  static inline barrett bt_;

 public:
  static constexpr bool FIXED_MOD = false;
  static constexpr void set_mod(u32 m) {
    assert(1 <= m);
    bt_ = barrett(m);
  }

  constexpr mint_ds() {}
  template <int_c T>
  constexpr mint_ds(T v) { this->v_ = mod_(v); }

 private:
  using raw_t = typename base::raw_type;
  using sraw_t = typename base::sraw_type;
  template <sint_c T>
  static constexpr raw_t mod_(T v) {
    i64 x = i64(v % (i64)mod_());
    return raw_t(x + (x < 0 ? mod_() : 0));
  }
  template <uint_c T>
  static constexpr raw_t mod_(T v) { return raw_t(v % mod_()); }
  static constexpr raw_t mod_() { return bt_.umod(); }
  constexpr raw_t val_() const { return this->v_; }
  constexpr raw_t &data_() { return this->v_; }

  constexpr mint_ds neg_() const { return -(sraw_t)val_(); }
  constexpr mint_ds &adde_(mint_ds const &r) {
    data_() += r.val_();
    if (val_() >= mod_()) data_() -= mod_();
    return *this;
  }
  constexpr mint_ds &sube_(mint_ds const &r) {
    data_() -= r.val_();
    if (val_() >= mod_()) data_() += mod_();
    return *this;
  }
  constexpr mint_ds &mule_(mint_ds const &r) {
    data_() = bt_.mul(val_(), r.val_());
    return *this;
  }
};

}  // namespace tifa_libs::math


#line 11 "src/test_cpverifier/library-checker/inverse_matrix.ds.test.cpp"

using mint = tifa_libs::math::mint_ds<-1>;
using mat = tifa_libs::math::matrix<mint>;

int main() {
  mint::set_mod(MOD);
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);
  u32 n;
  std::cin >> n;
  mat a(n, n);
  std::cin >> a;
  auto is_0 = [](mint const &x) { return x.val() == 0; };
  auto ge = [&is_0](mat &m, bool f) { return tifa_libs::math::ge_basic(m, is_0, f); };
  auto res = tifa_libs::math::inv_mat(a, is_0, ge);
  if (res)
    std::cout << res.value();
  else
    std::cout << "-1\n";
  return 0;
}

Test cases

Env Name Status Elapsed Memory
g++-12 anti55588_00 :heavy_check_mark: AC 10 ms 4 MB
g++-12 example_00 :heavy_check_mark: AC 9 ms 4 MB
g++-12 example_01 :heavy_check_mark: AC 9 ms 4 MB
g++-12 example_02 :heavy_check_mark: AC 9 ms 4 MB
g++-12 lowrank_max_random_00 :heavy_check_mark: AC 328 ms 7 MB
g++-12 lowrank_max_random_01 :heavy_check_mark: AC 300 ms 7 MB
g++-12 lowrank_max_random_02 :heavy_check_mark: AC 373 ms 7 MB
g++-12 lowrank_max_random_03 :heavy_check_mark: AC 291 ms 7 MB
g++-12 lowrank_max_random_04 :heavy_check_mark: AC 332 ms 7 MB
g++-12 max_random_00 :heavy_check_mark: AC 416 ms 7 MB
g++-12 max_random_01 :heavy_check_mark: AC 420 ms 7 MB
g++-12 max_random_02 :heavy_check_mark: AC 415 ms 7 MB
g++-12 max_random_03 :heavy_check_mark: AC 416 ms 7 MB
g++-12 max_random_04 :heavy_check_mark: AC 417 ms 7 MB
g++-12 perm_max_random_00 :heavy_check_mark: AC 54 ms 7 MB
g++-12 perm_max_random_01 :heavy_check_mark: AC 54 ms 7 MB
g++-12 perm_max_random_02 :heavy_check_mark: AC 55 ms 7 MB
g++-12 perm_max_random_03 :heavy_check_mark: AC 53 ms 7 MB
g++-12 perm_max_random_04 :heavy_check_mark: AC 53 ms 7 MB
g++-12 random_00 :heavy_check_mark: AC 34 ms 4 MB
g++-12 random_01 :heavy_check_mark: AC 41 ms 4 MB
g++-12 random_02 :heavy_check_mark: AC 13 ms 4 MB
g++-12 random_03 :heavy_check_mark: AC 38 ms 4 MB
g++-12 random_04 :heavy_check_mark: AC 10 ms 4 MB
g++-12 signed_overflow_00 :heavy_check_mark: AC 9 ms 4 MB
g++-12 unsigned_overflow_00 :heavy_check_mark: AC 9 ms 4 MB
Back to top page