Tifa's CP Library

:heavy_check_mark: is_proot (src/code/nt/is_proot.hpp)

Depends on

Required by

Verified with

Code

#ifndef TIFALIBS_MATH_IS_PROOT
#define TIFALIBS_MATH_IS_PROOT

#include "../math/qpow_mod.hpp"

namespace tifa_libs::math {

template <std::unsigned_integral T, class It>
CEXP bool is_proot(T g, T m, It pf_begin, It pf_end) {
  if (!g) return false;
  for (; pf_begin != pf_end; ++pf_begin)
    if (qpow_mod(g, (m - 1) / *pf_begin, m) == 1) return false;
  return true;
}

}  // namespace tifa_libs::math

#endif
#line 1 "src/code/nt/is_proot.hpp"



#line 1 "src/code/math/qpow_mod.hpp"



#line 1 "src/code/math/mul_mod.hpp"



#line 1 "src/code/math/safe_mod.hpp"



#line 1 "src/code/util/traits.hpp"



#line 1 "src/code/util/util.hpp"



#include <bits/stdc++.h>

#define CEXP constexpr
#define TPN typename
#define CR const&

#define cT_(...) std::conditional_t<sizeof(__VA_ARGS__) <= sizeof(size_t), __VA_ARGS__, __VA_ARGS__ CR>
#define fle_(T, i, l, r, ...) for (T i = (l), i##e = (r)__VA_OPT__(, ) __VA_ARGS__; i <= i##e; ++i)
#define flt_(T, i, l, r, ...) for (T i = (l), i##e = (r)__VA_OPT__(, ) __VA_ARGS__; i < i##e; ++i)

#ifdef ONLINE_JUDGE
#undef assert
#define assert(x) 42
#endif

using i8 = int8_t;
using i16 = int16_t;
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
using isz = ptrdiff_t;

using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;
using usz = size_t;

using f32 = float;
using f64 = double;
using f128 = long double;

template <class T>
using ptt = std::pair<T, T>;
template <class T>
using pt3 = std::tuple<T, T, T>;
template <class T>
using pt4 = std::tuple<T, T, T, T>;

template <class T, usz N>
using arr = std::array<T, N>;
template <class T>
using vec = std::vector<T>;
template <class T>
using vvec = vec<vec<T>>;
template <class T>
using v3ec = vec<vvec<T>>;
template <class U, class T>
using vecp = vec<std::pair<U, T>>;
template <class U, class T>
using vvecp = vvec<std::pair<U, T>>;
template <class T>
using vecpt = vec<ptt<T>>;
template <class T>
using vvecpt = vvec<ptt<T>>;

template <class T, class C = std::less<T>>
using pq = std::priority_queue<T, vec<T>, C>;
template <class T>
using pqg = std::priority_queue<T, vec<T>, std::greater<T>>;

using strn = std::string;
using strnv = std::string_view;

using vecu = vec<u32>;
using vvecu = vvec<u32>;
using v3ecu = v3ec<u32>;
using vecu64 = vec<u64>;
using vecb = vec<bool>;
using vvecb = vvec<bool>;

using namespace std::literals;

CEXP i8 operator""_i8(unsigned long long x) { return (i8)x; }
CEXP i16 operator""_i16(unsigned long long x) { return (i16)x; }
CEXP i32 operator""_i32(unsigned long long x) { return (i32)x; }
CEXP i64 operator""_i64(unsigned long long x) { return (i64)x; }
CEXP isz operator""_iz(unsigned long long x) { return (isz)x; }

CEXP u8 operator""_u8(unsigned long long x) { return (u8)x; }
CEXP u16 operator""_u16(unsigned long long x) { return (u16)x; }
CEXP u32 operator""_u32(unsigned long long x) { return (u32)x; }
CEXP u64 operator""_u64(unsigned long long x) { return (u64)x; }
CEXP usz operator""_uz(unsigned long long x) { return (usz)x; }

inline const auto fn_0 = [](auto&&...) {};
inline const auto fn_is0 = [](auto x) { return x == 0; };

// std::sqrt(std::numeric_limits<FP>::epsilon())
template <std::floating_point FP>
CEXP inline FP eps_v = FP(1e-8L);
using std::numbers::pi_v;

namespace tifa_libs {
using std::min, std::max, std::swap;
template <class T>
constexpr T abs(T x) { return x < 0 ? -x : x; }
}  // namespace tifa_libs


#line 5 "src/code/util/traits.hpp"

namespace tifa_libs {

template <class T>
concept iterable_c = requires(T v) {
  { v.begin() } -> std::same_as<TPN T::iterator>;
  { v.end() } -> std::same_as<TPN T::iterator>;
};

template <class T>
concept container_c = iterable_c<T> && !std::derived_from<T, std::basic_string<TPN T::value_type>> && !std::derived_from<T, std::basic_string_view<TPN T::value_type>>;

template <class T>
CEXP bool is_char_v = std::is_same_v<T, char> || std::is_same_v<T, signed char> || std::is_same_v<T, unsigned char>;
template <class T>
concept char_c = is_char_v<T>;

template <class T>
CEXP bool is_s128_v = std::is_same_v<T, __int128_t> || std::is_same_v<T, __int128>;
template <class T>
concept s128_c = is_s128_v<T>;

template <class T>
CEXP bool is_u128_v = std::is_same_v<T, __uint128_t> || std::is_same_v<T, unsigned __int128>;
template <class T>
concept u128_c = is_u128_v<T>;

template <class T>
CEXP bool is_i128_v = is_s128_v<T> || is_u128_v<T>;
template <class T>
concept i128_c = is_u128_v<T>;

template <class T>
CEXP bool is_int_v = std::is_integral_v<T> || is_i128_v<T>;
template <class T>
concept int_c = is_int_v<T>;

template <class T>
CEXP bool is_sint_v = is_s128_v<T> || (is_int_v<T> && std::is_signed_v<T>);
template <class T>
concept sint_c = is_sint_v<T>;

template <class T>
CEXP bool is_uint_v = is_u128_v<T> || (is_int_v<T> && std::is_unsigned_v<T>);
template <class T>
concept uint_c = is_uint_v<T>;

template <class T>
concept mint_c = requires(T x) {
  { x.mod() } -> uint_c;
  { x.val() } -> uint_c;
};

template <class T>
concept dft_c = requires(T x, vec<TPN T::data_t> v, u32 n) {
  { x.size() } -> std::same_as<u32>;
  x.bzr(n);
  x.dif(v, n);
  x.dit(v, n);
};

template <class T>
concept ntt_c = dft_c<T> && requires(T x) {
  T::max_size;
  T::G;
};

template <class T>
CEXP bool is_arithm_v = std::is_arithmetic_v<T> || is_int_v<T>;
template <class T>
concept arithm_c = is_arithm_v<T>;

template <class T>
struct to_sint : std::make_signed<T> {};
template <>
struct to_sint<u128> {
  using type = u128;
};
template <>
struct to_sint<i128> {
  using type = u128;
};
template <class T>
using to_sint_t = TPN to_sint<T>::type;

template <class T>
struct to_uint : std::make_unsigned<T> {};
template <>
struct to_uint<u128> {
  using type = u128;
};
template <>
struct to_uint<i128> {
  using type = u128;
};
template <class T>
using to_uint_t = TPN to_uint<T>::type;

}  // namespace tifa_libs


#line 5 "src/code/math/safe_mod.hpp"

namespace tifa_libs::math {

template <sint_c T>
CEXP T safe_mod(T x, to_uint_t<T> mod) { return ((x %= (T)mod) < 0 ? x + (T)mod : x); }

}  // namespace tifa_libs::math


#line 5 "src/code/math/mul_mod.hpp"

namespace tifa_libs::math {

CEXP i64 mul_mod_s(i64 a, i64 b, u64 mod) {
  if (std::bit_width((u64)abs(a)) + std::bit_width((u64)abs(b)) < 64) return safe_mod(a * b % (i64)mod, mod);
  return safe_mod((i64)((i128)a * b % mod), mod);
}
CEXP u64 mul_mod_u(u64 a, u64 b, u64 mod) {
  if (std::bit_width(a) + std::bit_width(b) <= 64) return a * b % mod;
  return (u64)((u128)a * b % mod);
}

}  // namespace tifa_libs::math


#line 5 "src/code/math/qpow_mod.hpp"

namespace tifa_libs::math {

CEXP u64 qpow_mod(u64 a, u64 b, u64 mod) {
  u64 res(1);
  for (a %= mod; b; b >>= 1, a = mul_mod_u(a, a, mod))
    if (b & 1) res = mul_mod_u(res, a, mod);
  return res;
}

}  // namespace tifa_libs::math


#line 5 "src/code/nt/is_proot.hpp"

namespace tifa_libs::math {

template <std::unsigned_integral T, class It>
CEXP bool is_proot(T g, T m, It pf_begin, It pf_end) {
  if (!g) return false;
  for (; pf_begin != pf_end; ++pf_begin)
    if (qpow_mod(g, (m - 1) / *pf_begin, m) == 1) return false;
  return true;
}

}  // namespace tifa_libs::math


Back to top page